Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone

Wenming Li, Xiaobo Li, Yuqing Duan, Zhirong Deng and Runling Wang*

Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
Correspondence e-mail: wangrunling@tijmu.edu.cn
Received 1 December 2011; accepted 8 December 2011
Key indicators: single-crystal X-ray study; $T=113 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.035 ; w R$ factor $=0.091$; data-to-parameter ratio $=16.9$.

In title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$, all of the non- H atoms lie approximately in a plane with the largest deviation being 0.061 (2) \AA. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond generates an $S(6)$ ring motif. No classical intermolecular hydrogen bonding occurs, with only van der Waals forces stabilizing the crystal structure.

Related literature

For the biological activity of isoflavones, see: Wang \& Murphy (1994); Yoshio et al. (1989). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation, see: Aalten et al. (1989).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
$M_{r}=196.20$
Monoclinic, $P 2_{1} / n$

$$
\begin{aligned}
& a=7.733(4) \AA \\
& b=8.059(4) \AA \\
& c=14.851(7) \AA
\end{aligned}
$$

$\beta=91.416(10)^{\circ}$
$V=925.3(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Rigaku Saturn724 CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009)
$T_{\text {min }}=0.972, T_{\text {max }}=0.987$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.091$
$S=1.04$
2212 reflections

$$
\begin{aligned}
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=113 \mathrm{~K} \\
& 0.26 \times 0.20 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

10288 measured reflections

2212 independent reflections
1621 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 \cdots O4	0.84	1.83	$2.5666(14)$	145

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This study was supported by the National Natural Science Foundation of China (grant No. 20972112), the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20091202110010), the Key Program of Tianjin Municipal Natural Science Foundation (grant No. 09JCZDJC21600), as well by Beijing Honghui Meditech Co. Ltd.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5147).

References

Aalten, H. L., Van Koten, G., Grove, D. M., Kuilman, T., Piekstra, O. G., Hulshof, L. A. \& Sheldon, R. A. (1989). Tetrahedron, 45, 5565-5578.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, H. \& Murphy, P. A. (1994). J. Agric. Food Chem. 42, 1666-1673.
Yoshio, I., Kenji, Y., Yukinori, T. \& Shoshiro, N. (1989). J. Antibiot. 42, 15231525.

supplementary materials

1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone

W. Li, X. Li, Y. Duan, Z. Deng and R. Wang

Comment

Soy isoflavone is secondary metabolite during its growth period. As it could be extracted from plants and have a similar structure of estrogen, people usually call it phytoestrogen. Due to the manifested biological activity, such as antitumor, cardiovascular protection, anti-oxidant, anti-inflammatory, osteoporosis improvement, dual effect on estrogen, isoflavone has been paid more attention in social and academic area (Wang \& Murphy, 1994; Yoshio et al., 1989). During the development of our own isoflavone derivatives, the title compound, 1-(2-hydroxy-3,5-dimethoxyphenyl)ethanone, was prepared as an intermediate. The crystallographic analysis of the title compound described herein further confirms the molecular structures of the title compound and isoflavones.

In title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$, all bond lengths and angles in the molecule are normal (Allen et al., 1987). All of atoms $(\mathrm{C} 1-\mathrm{C} 10 / \mathrm{O} 1-\mathrm{O} 4$, except H atoms)lie in a plane with the largest deviation 0.061 (2) \AA for C 10 . The intramolecular $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 4$ hydrogen bonds generate $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995). There is no classical intermolecular hydrogen bond found in the structure with only Van der Waals forces stabilizing the crystal.

Experimental

Under ice bath, a solution of 2-hydroxyacetophenone ($100 \mathrm{~g}, 0.734 \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{OH}(1.2 \mathrm{~L})$ was added N -bromosuccinimide ($392 \mathrm{~g}, 2.203 \mathrm{~mol}$). Then the reaction mixture was stirred overnight at room temperature. The mixture was added $1 L$ water to form yellow precipitation then filtered. The filtered cake was washed with a little amount of $\mathrm{CH} 3 \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}=1 / 1$ to yield 80 g light yellow crystals, which is 1-(3,5-dibromo-2-hydroxyphenyl)ethanone. Under ice bath, sodium methoxide(73 $\mathrm{g}, 1.360 \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(1 L)$. Then under nitrogen protection, 1-(3,5-dibromo-2-hydroxyphenyl)ethanone $(80 \mathrm{~g}, 0.272 \mathrm{~mol})$ and $\mathrm{CuCl}(27 \mathrm{~g}, 0.272 \mathrm{~mol})$ was added to the solution quickly followed by $\mathrm{DMF}(0.5 L)$. The brown suspension was heated to 363 K overnight until LC-MS showed complete. The mixture was neutralized with concentrated HCl to $\mathrm{pH} 5-6$, filtered through celite. Then it was extracted with ethyl acetate three times. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to obtain crude product. Pure title compound was obtained by column chromatography. Crystals suitable for X-ray diffraction were obtained through slow evaporation of a solution of the pure title compound in ethyl acetate/n-hexane (1/4 by volume)(Aalten et al., 1989).

Refinement

All H atoms were found on difference maps, with $\mathrm{C}-\mathrm{H}=0.95$ or $0.98, \mathrm{O}-\mathrm{H}=0.84 \AA$ and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for the methyl and hydroxyl H atoms.

supplementary materials

Figures

Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

1-(2-Hydroxy-3,5-dimethoxyphenyl)ethanone

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
$M_{r}=196.20$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn

$$
a=7.733(4) \AA
$$

$b=8.059$ (4) \AA
$c=14.851(7) \AA$
$\beta=91.416(10)^{\circ}$
$V=925.3(7) \AA^{3}$
$Z=4$
$F(000)=416$
$D_{\mathrm{x}}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3101 reflections
$\theta=1.4-27.9^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=113 \mathrm{~K}$
Prism, colorless
$0.26 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Rigaku Saturn724 CCD
diffractometer
Radiation source: rotating anode
multilayer
Detector resolution: 14.22 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
$T_{\text {min }}=0.972, T_{\text {max }}=0.987$
2212 independent reflections
1621 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 19$
10288 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.091$
$S=1.04$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0513 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

2212 reflections
131 parameters
0 restraints
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.25$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O1	$0.91994(10)$	$0.94416(10)$	$0.30478(5)$	$0.0250(2)$
O2	$1.34013(9)$	$0.60797(9)$	$0.45862(5)$	$0.0214(2)$
O3	$1.15055(10)$	$0.58744(9)$	$0.60098(5)$	$0.0211(2)$
H3	1.0779	0.5817	0.6420	0.032^{*}
O4	$0.86931(10)$	$0.65890(10)$	$0.68062(5)$	$0.0244(2)$
C1	$0.75834(15)$	$1.03005(14)$	$0.30265(8)$	$0.0231(3)$
H1A	0.6636	0.9496	0.3057	0.035^{*}
H1B	0.7468	1.0937	0.2466	0.035^{*}
H1C	0.7537	1.1058	0.3542	0.035^{*}
C2	$0.96176(14)$	$0.85633(13)$	$0.38174(7)$	$0.0183(2)$
C3	$1.12493(14)$	$0.77847(12)$	$0.37976(7)$	$0.0189(2)$
H3A	1.1938	0.7880	0.3279	0.023^{*}
C4	$1.18437(14)$	$0.68864(13)$	$0.45298(7)$	$0.0175(2)$
C5	$1.08271(13)$	$0.67472(12)$	$0.53088(7)$	$0.0169(2)$
C6	$0.92014(13)$	$0.75150(12)$	$0.53199(7)$	$0.0171(2)$
C7	$0.85964(14)$	$0.84275(13)$	$0.45606(7)$	$0.0185(2)$
H7	0.7492	0.8943	0.4564	0.022^{*}
C8	$1.44819(15)$	$0.62000(15)$	$0.38132(8)$	$0.0248(3)$
H8A	1.3885	0.5701	0.3290	0.037^{*}
H8B	1.5571	0.5611	0.3935	0.037^{*}
H8C	1.4724	0.7370	0.3688	0.037^{*}
C9	$0.81400(14)$	$0.73530(13)$	$0.61314(7)$	$0.0196(2)$
C10	$0.63652(15)$	$0.81151(15)$	$0.61438(8)$	$0.0261(3)$
H10A	0.5841	0.7892	0.6726	0.039^{*}
H10B	0.5642	0.7633	0.5660	0.039^{*}
H10C	0.6456	0.9316	0.6054	0.039^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0233(4)$	$0.0318(4)$	$0.0201(4)$	$0.0054(3)$	$0.0026(3)$	$0.0080(3)$
O2	$0.0161(4)$	$0.0290(4)$	$0.0192(4)$	$0.0037(3)$	$0.0035(3)$	$0.0023(3)$
O3	$0.0202(4)$	$0.0268(4)$	$0.0163(4)$	$0.0024(3)$	$0.0012(3)$	$0.0028(3)$
O4	$0.0248(4)$	$0.0308(5)$	$0.0177(4)$	$0.0009(3)$	$0.0024(3)$	$0.0011(3)$
C1	$0.0231(6)$	$0.0236(6)$	$0.0223(6)$	$0.0024(5)$	$-0.0021(5)$	$0.0020(5)$
C2	$0.0206(6)$	$0.0183(5)$	$0.0160(5)$	$-0.0019(4)$	$-0.0008(4)$	$0.0005(4)$
C3	$0.0192(6)$	$0.0207(5)$	$0.0170(5)$	$-0.0025(4)$	$0.0040(4)$	$-0.0008(4)$
C4	$0.0154(5)$	$0.0181(5)$	$0.0192(5)$	$-0.0006(4)$	$0.0010(4)$	$-0.0029(4)$
C5	$0.0196(6)$	$0.0165(5)$	$0.0146(5)$	$-0.0017(4)$	$-0.0013(4)$	$-0.0012(4)$
C6	$0.0185(6)$	$0.0172(5)$	$0.0158(5)$	$-0.0020(4)$	$0.0022(4)$	$-0.0027(4)$
C7	$0.0165(5)$	$0.0186(5)$	$0.0204(6)$	$0.0000(4)$	$-0.0003(4)$	$-0.0020(4)$
C8	$0.0189(6)$	$0.0310(6)$	$0.0249(6)$	$0.0022(5)$	$0.0081(5)$	$0.0031(5)$
C9	$0.0217(6)$	$0.0191(5)$	$0.0181(5)$	$-0.0024(4)$	$0.0012(4)$	$-0.0034(4)$
C10	$0.0238(6)$	$0.0314(6)$	$0.0234(6)$	$0.0046(5)$	$0.0060(5)$	$0.0008(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	$1.3762(14)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.4283(14)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.3695(13)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.4398(14)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.3516(13)$
$\mathrm{O} 3-\mathrm{H} 3$	0.8400
$\mathrm{O} 4-\mathrm{C} 9$	$1.2430(14)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{C} 7$	$1.3773(16)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4102(16)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3758(16)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$117.07(9)$
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 8$	$116.50(9)$
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{H} 3$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B-C1-H1C	109.5
O1-C2-C7	$125.37(10)$
O1-C2-C3	$113.80(9)$
C7-C2-C3	$120.83(10)$
C4-C3-C2	$119.95(10)$
C4-C3-H3A	120.0

C3-H3A	0.9500
C4-C5	$1.4192(15)$
C5-C6	$1.4016(15)$
C6-C7	$1.4161(16)$
C6-C9	$1.4806(16)$
C7-H7	0.9500
C8-H8A	0.9800
C8-H8B	0.9800
C8-H8C	0.9800
C9-C10	$1.5041(16)$
C10-H10A	0.9800
C10-H10B	0.9800
C10-H10C	0.9800
C5-C6-C7	$119.91(9)$
C5-C6-C9	$119.08(10)$
C7-C6-C9	$121.00(10)$
C2-C7-C6	$119.65(10)$
C2-C7-H7	120.2
C6-C7-H7	120.2
O2-C8-H8A	109.5
O2-C8-H8B	109.5
H8A-C8-H8B	109.5
O2-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
O4-C9-C6	$120.88(11)$
O4-C9-C10	$119.23(10)$

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$125.05(9)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$114.62(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.32(10)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$123.49(9)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 4$	$117.18(10)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.33(10)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 7$	$0.96(15)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.46(9)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.95(9)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.50(16)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$0.15(15)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	$-179.49(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$179.97(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.41(16)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 3$	$0.96(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 3$	$-178.69(9)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.47(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.87(15)$

$\mathrm{C} 6-\mathrm{C} 9-\mathrm{C} 10$	$119.89(10)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$179.09(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.45(15)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 9$	$-1.01(15)$
C4-C5-C6-C9	$179.46(9)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-178.46(10)$
C3-C2-C7-C6	$0.92(16)$
C5-C6-C7-C2	$-0.44(16)$
C9-C6-C7-C2	$179.66(9)$
C5-C6-C9-O4	$2.04(15)$
C7-C6-C9-O4	$-178.05(10)$
C5-C6-C9-C10	$-177.77(10)$
C7-C6-C9-C10	$2.13(15)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 4$	0.84	1.83	$2.5666(14)$	145.

supplementary materials

Fig. 1

